|
|
ДОСРОЧНЫЙ ЕГЭ 28.04.2014
|
|
|
|
1 |
|
Найдите наибольшее
значение функции
y = (x − 27 ) e28 − x на отрезке[23;40].
|
2 |
|
y = (x − 4
) e2x − 7
→ [2;11]
|
3 |
|
y = (2 x −
6 ) e13 −4 x
→ [2;14].
|
4 |
|
y = (2
x +15 ) e2
x + 16
→ [−12;−2]
|
|
|
|
|
|
ЭКСТРЕМУМЫ ЛОКАЛЬНЫЕ И ГЛОБАЛЬНЫЕ
|
|
|
ТОЧКА МИНИМУМА
Найдите точку минимума функции
|
▲ |
|
y
= x3
− 48 x +
17
|
▲ |
|
y
= x3
− 3 x2
+ 2
|
▲ |
|
y
= x3
− 2 x2
+ x +
3 |
▲ |
|
y
= x3
+ 5 x2
+ 7 x
− 5 |
▲ |
|
y
= 7 + 12 x
−x3 |
▲ |
|
y
= 9
x2
−x3 |
▲ |
|
y
= 5 + 9 x
−x3/3 |
▲ |
|
y
= x3/3
− 9 x −
7 |
▲ |
|
y
= −x/(x2
+ 1)
|
▲ |
|
y
= −(x2
+ 1)/x |
▲ |
|
y
= 25/x
+ x
+ 25
|
▲ |
|
y
= (x2
− 6 x
+ 11 )1/2 |
▲ |
|
y
= (x + 3)2·(x
+ 5)
−
1
|
▲ |
|
y
= x3/2
− 3 x + 1
|
▲ |
|
y
= (2/3)·x3/2
− 2 x + 1 |
▲ |
|
y
=
x·x1/2
− 3 x + 1 |
▲ |
|
y
= (2/3)·x·x1/2
− 2 x + 1 |
▲ |
|
y
=7x^2
+ 2x + 3 |
▲ |
|
y
= (x
+ 16) ex
−
16 |
▲ |
|
y
= ( 3 −x
) e3
− x |
▲ |
|
y
= ( 3
x2
− 36 x +
36) ex −
36 |
▲ |
|
y
= (
x2
− 8 x +
8) e6
− x |
▲ |
|
y
= (
x
− 2 )2
ex
− 5 |
▲ |
|
y
= (
x
+ 3 )2
e2
− x |
▲ |
|
y
= log5(x2
− 6 x
+ 12) + 2 |
▲ |
|
y
= 2 x
− ln ( x
+ 3 ) + 7 |
▲ |
|
y
= 3
x
− ln (x
+ 3)3
|
▲ |
|
y
= 2
x2
− 5 x +
ln
x
− 3 |
▲ |
|
y
= (0.5
−
x)·cos
x + sin x
из (0;0.5π) |
|
|
ТОЧКА МАКСИМУМА
Найдите точку максимума функции
|
▲ |
|
y
= x3
− 48 x +
17 |
▲ |
|
y
= x3
− 3 x2
+ 2 |
▲ |
|
y
= x3
+ 2 x2
+ x +
3 |
▲ |
|
y
= x3
− 5 x2
+ 7 x
− 5
|
▲ |
|
y
= 7 + 12 x
−x3
|
▲ |
|
y
= 9
x2
−x3
|
▲ |
|
y
= x3/3
− 9 x −
7 |
▲ |
|
y
= 5 + 9
x −x3/3 |
▲ |
|
y
= (x − 2)2·(x
− 4) + 5 |
▲ |
|
y
= −(x2
+ 289)/x |
▲ |
|
y
= 16/x
+ x
+ 3
|
▲ |
|
y
= −x/(x2
+ 289) |
▲ |
|
y
= 7 + 6
x
− 2·x3/2 |
▲ |
|
y
= (4 − 4 x
−x2)1/2
|
▲ |
|
y
= −(2/3)·x3/2
+ 3 x
+ 1 |
▲ |
|
y
= 7 + 6
x
− 2 x·x1/2
|
▲ |
|
y
= −(2/3)·x·x1/2
+ 3 x
+ 1 |
▲ |
|
y
=116
x
− x^2
|
▲ |
|
y
= ( 9 −x
) ex
+ 9 |
▲ |
|
y
= (
x
+ 16
) e16
− x
|
▲ |
|
y
= ( 3
x2
− 36 x +
36) ex +
36 |
▲ |
|
y
= (
x2
− 10 x +
10) e5
− x |
▲ |
|
y
= (
x
− 2 )2
ex −
6 |
▲ |
|
y
= (
x
+ 6 )2
e4
− x |
▲ |
|
y
= ln
( x
+ 5 ) − 2 x
+ 9 |
▲ |
|
y
= ln (x
+ 5)5
− 5
x |
▲ |
|
y
=4 x
− 4 ln (x
+ 7) + 6 |
▲ |
|
y
= 8 ln (x
+ 7) − 8 x
+ 3 |
▲ |
|
y
= 2
x2
− 13 x +
9 ln
x
+ 8 |
▲ |
|
y = log2(2 +2 x −x2)−2 |
▲ |
|
y
= (2
x
− 3)·cos
x
− 2 sin x
+ 5 из (0;π/2) |
|
|
НАИМЕНЬШЕЕ ЗНАЧЕНИЕ
Найдите наименьшее значение функцииу =
f (x) на отрезке [a;b]
|
▲ |
|
y = x3− 27 x
→[0;4]
|
▲ |
|
y
= x3
− 3 x2
+ 2 → [1;4] |
▲ |
|
y
= x3
− 2 x2
+ x +
3→ [1;4] |
▲ |
|
y
= x3
−x2
− 40 x +
3 → [0;4] |
▲ |
|
y
= 7 + 12 x
−x3
→ [-2;2] |
▲ |
|
y
= 9
x2
−x3
→ [-1;5] |
▲ |
|
y
= x3/3
− 9 x −
7→ [-3;3] |
▲ |
|
y
= (x + 3)2·(x
+ 5)
−
1 →
[-4;-1] |
▲ |
|
y
= (x2
+ 25)/x
→ [-10;-1] |
▲ |
|
y
=
x + 36/x
→ [1;9] |
▲ |
|
y
= (x2
− 6 x
+ 13 )1/2
|
▲ |
|
y
= x·x1/2
− 3 x + 1
→ [1;9] |
▲ |
|
y
= (2/3)·x·x1/2
− 3 x + 1
→ [1;9] |
▲ |
|
y
= x3/2
− 3 x + 1
→ [1;9]
|
▲ |
|
y
= (2/3)·x3/2
− 3 x + 1
→ [1;9] |
▲ |
|
y
=2x^2
+ 2x +
5 |
▲ |
|
y
= (x
− 8) ex
− 7
→ [6;8] |
▲ |
|
y
= (8 − x)
e9 − x
→ [3;10] |
▲ |
|
y
= (3
x2
− 36 x +
36) e x
− 10
→ [8;11] |
▲ |
|
y
= (x2
− 8 x +
8) e2 −
x
→ [1;7] |
▲ |
|
y
= (x
− 2)2
e x
− 2
→ [1;4] |
▲ |
|
y
= (x
+ 3)2
e
−3 − x
→ [-5;-1] |
▲ |
|
y
=e2x
− 6e2x
+ 3→ [1;2] |
▲ |
|
y
= 9 x
− ln ( 9
x
) + 3
→ [1/18;5/18] |
▲ |
|
y
= 2 x2
− 5 x
+ ln x
− 3
→ [5/6;7/6] |
▲ |
|
y
= 3 x
− ln ( x
+ 3 )3
→ [−2.5;0]
|
▲ |
|
y
= 4 x
− 4 ln ( x
+ 7 ) + 6
→ [−6.5;0]
|
▲ |
|
y
= log3(x2
− 6 x
+ 10)
+ 2
|
▲ |
|
y
= 7 sin
x
− 8 x +
9 → [−1.5π;0]
|
▲ |
|
y
= 5 sin
x
+ (24/π)·x
+ 6 → [−5π/6;0] |
▲ |
|
y
= 13 x
− 9 sin x
+ 9 → [0;0.5π]
|
▲ |
|
y
= 3 − 5 π/4 + 5
x
− 5·21/2·sin
x →
[0;0.5π] |
▲ |
|
y
= 5 cos
x
− 6 x
+ 4 → [−1.5π;0]
|
▲ |
|
y
= 6 cos
x
+ (24/π)·x
+ 5 → [−2π/3;0] |
▲ |
|
y
= 9 cos
x
+ 14 x
+ 7 → [0;1.5π]
|
▲ |
|
y
= 3 + 5 π/4 − 5
x
− 5·21/2·cosx→
[0;0.5π]
|
▲ |
|
y
= 5 tg
x
− 5 x + 6
→ [0;π/4] |
▲ |
|
y
= 4 tg
x
− 4 x
− π + 5 →
[−π/4;π/4]
|
▲ |
|
y
= 4 x
− 4 tg x
+ 12 → [−π/4;0]
|
▲ |
|
y
= 2 tg
x
− 4 x
+ π − 3 →
[−π/3;π/3]
|
▲ |
|
y
= −14
x + 7 tg
x
+ 35 π + 11 →
[−π/3;π/3] |
|
|
НАИБОЛЬШЕЕ ЗНАЧЕНИЕ
Найдите наибольшее значение функцииу =
f (x) на отрезке [a;b]
|
▲ |
|
y
= x3
− 3 x + 4
→ [-2;0]
|
▲ |
|
y
= x3
− 6 x2
→ [-3;3] |
▲ |
|
y
= x3
+ 2 x2
+ x +
3→ [-4;-1] |
▲ |
|
y
= x3
+ 2 x2
− 4 x
+ 4 → [-2;0] |
▲ |
|
y
= x3/3
− 9 x −
7→ [-3;3] |
▲ |
|
y
= 7 + 12 x
−x3
→ [-2;2] |
▲ |
|
y
= 9
x2
−x3
→ [2;10] |
▲ |
|
y
= 5 + 9 x
−x3/3
→ [-3;3] |
▲ |
|
y
= (x − 2)2·(x
− 4) + 5 →
[1;3] |
▲ |
|
y
=
x5
− 5
x3
− 20 x→ [−6;1] |
▲ |
|
y
= 3
x5
−20
x3
−54 x→ [−4;−1] |
▲ |
|
y
= (x2
+ 25)/x
→ [1;10] |
▲ |
|
y
=
x + 9/x
→ [-4;-1] |
▲ |
|
y
= (5 − 4 x
−x2
)1/2
|
▲ |
|
y
= 3
x
− 2·x3/2
→ [0;4] |
▲ |
|
y
= −(2/3)·x3/2
+ 3 x
+ 1 → [1;9] |
▲ |
|
y
= 3
x
− 2 x·x1/2
→ [0;4] |
▲ |
|
y
= −(2/3)·x x1/2
+ 3 x
+ 1 → [1;9] |
▲ |
|
y
=3−7
− 6x
− x^2 |
▲ |
|
y
= (8 − x)
e x
− 7
→ [3;10] |
▲ |
|
y
= (x
− 9) e10 −
x
→ [-11;11] |
▲ |
|
y
= (3
x2
− 36 x +
36) e x
→ [-1;4] |
▲ |
|
y
= (x2
− 10 x +
10) e10 −
x
→ [5;11] |
▲ |
|
y
= (x
− 2)2
e x
→
[-5;1] |
▲ |
|
y
= (x
+ 6)2
e
−4 − x
→ [-6;-1] |
▲ |
|
y
= ln
( x
+ 5 )5
− 5 x
→ [−45;0]
|
▲ |
|
y
= 8 ln (
x
+ 7 ) − 8 x
+ 3 →
[−65;0]
|
▲ |
|
y
= ln
( 11
x
) − 11 x
+9 →
[1/22;5/22] |
▲ |
|
y
= 2 x2
− 13 x
+ 9 ln x
+ 8 →
[13/14;15/14] |
▲ |
|
y
= log5(4
− 2 x
−x2)
+ 3
|
▲ |
|
y
= 10 sin
x
− (36/π)·x
+ 7 →
[−5π/6;0] |
▲ |
|
y
= 5 sin
x
− 6 x
+ 3
→ [0;π/2] |
▲ |
|
y
= 12 sin
x
− 6·31/2·x
+ 31/2·π
+ 6 →
[0;05π] |
▲ |
|
y
= 15
x − 3 sin
x + 5 →
[−05π;0] |
▲ |
|
y
= 2 cos
x
− (18/π)·x
+ 4 → [−2π/3;0]
|
▲ |
|
y
= 12 cos x
+ 6·31/2·x
− 2·31/2·π
+ 6
→ [0;05π] |
▲ |
|
y
= 7 cos
x
+ 16 x
− 2 →
[−3π/2;0]
|
▲ |
|
y
= 4 cos
x
− 20 x
+ 7 → [0;3π/2]
|
▲ |
|
y
= 3 tg
x
− 3 x + 5
→ [−025π;0]
|
▲ |
|
y
= 16 tg
x
− 16 x +
4π − 5 →
[−π/4;π/4]
|
▲ |
|
y
= 3 x
− 3 tg x
− 5 → [0;π/4]
|
▲ |
|
y
= 14 x
− 7 tg x
− 35 π+ 11 →
[−π/3;π/3] |
▲ |
|
y
= − 2 tg x
+ 4 x
− π − 3→
[−π/3;π/3]
|