B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
C1
C2
C3
C4
C5
C6
Закажи себе WolframAlpha|Pro! Получи пошаговые решения твоих задач!
ЕГЭ с Wolfram|Alpha :: 05.06.2014 :: Запад 1
N=ceil((a+b)/c) where a=310, b=28, c=40
c=0.001*a*b where a=12, b=400
plot (1,4,10,9,7,11,10,8,5,6,9,7,10,5,7,11,9,5,7,8,12,10,6,9)
{n*a+350,n*b,n*c+450} where n=30, a=255, b=270, c=245
triangle (1,0),(0,6),(6,0)
p=N[(m-1)/(n-1)] for m = 7, n = 49
(1/25)^(x+2) = 5^(x+5) over the reals
phi = max(180-alpha, 180-beta) where alpha=41,beta=65
polygon (-5,-3),(5,-3),(3.666,4.533),(0.915,5.758) and circle through (-5,-3),(5,-3),(3.666,4.533)
interpolating polynomial {(-10,1),(-9.8,0),(-8.8,-2),(-7.5,0),(-5.5,2.2),(-3.5,0),(-1.2,-1.3),(0,-0.5),(2,-1.7),(3,0),(4,2.3),(5.5,0),(6,-1.5)}
sphere radius 1 and sphere radius 8
simplify sqrt(72)-sqrt(288)*sin((21*Pi)/8)^2
a = v^2/(2*l) where l=250/1000,v=60
v = d^3/(3*sqrt(3)) where d=sqrt(48)
cube with diagonal length sqrt(48)
x = w*((m+n-2*p)/(m-n)) where m=10,n=30,p=25,w=200
local extrema 2*ln((x+4)^3)-8*x-19
{cos(x)+sqrt(3)*sin(3*Pi/2-x/2)+1 = 0, -4*Pi <= x, x <= -5*Pi/2}
plot cos(x)+sqrt(3)*sin(3*Pi/2-x/2)+1 for x from -4*Pi to -5*Pi/2
triangular pyramid with edge length 8, height (8/3)*sqrt(33)
triangle with vertices (4,0,0),(-4,0,0),(0, 4sqrt3/3,8sqrt33/3) and triangle with vertices (4,0,0),(0,4sqrt3,0),(0, 4sqrt3/3,8sqrt33/3)
{log(11-x,x+7)*log(x+5,9-x) <= 0, 64^(x^2-3*x+20)-(1/8)^(2*x^2-6*x-200) <= 0}
triangle with vertices (-21sin(7Pi/18), 0),(0,7sin(7Pi/18)sqrt3),(7cos(7Pi/18)sqrt3,0)
polygon (-19.7,0),(0,11.4),(1.4,7.7) and polygon (-1.8, 10.3),(0,11.4),(4.1,0)
(log(8,x+a)- log(8,x-a))^2-12(log(8,x+a)- log(8,x-a))a+35a^2-6a-9=0
(log(8,x+a)- log(8,x-a))^2-12(log(8,x+a)- log(8,x-a))a+35a^2-6a-9=0 where a=1
SOLO