N=ceil(z/s) where z=61,s=7
Z=(n+mp/100)z where m=19,n=3,z=600,p=50
BarChart(-5.5, -6, -0.5, 5, 15.5, 16, 20, 16.5, 12, 4.5, 2,-1)
B*n+s*v*b/100 where B=2800,b=20,v=9,s=400,n=2
polygon (0,0),(0,3),(7,3),(7,0), polygon (0,3),(7,2),(6,0)
n-m where n=.98,m=.84
sqrt(13-x) = 3
triangle [0,0],[4,0],[2.5,1.9], triangle [2.2,0],[2.5,0.],[2.5,1.9]
fit polynomial
cuboid 6,3,6, cuboid 3,3,3 and center (1.5,0,0)
-44 sin20/sin340
a*t^2+b*t+Tau-T<=0 where a=-20,b=220,Tau=1300,T=1500
cone with radius 3 and height 4
{u-v = a,1/v-1/u = t/A} where A=140,a=4,t=4
maximize x^3+8*x^2+16*x+23 over x=-13..-3
solve {cos(2*x)+1 = sqrt(2)*sin(Pi/2-x), -4*Pi <= x, x <= -5*Pi/2}
plot (cos(2*x)+1,sqrt(2)*sin(Pi/2-x)) for x from -4*Pi to -5*Pi/2
triangular pyramid with base edge length 6, height 2*sqrt(22)
solve {log(2-x,x+2)*log(x+3,3-x) <= 0, 4^(x^2+x-3)-(1/2)^(2*x^2-6*x-2)<=0}
circle (0,0),(4.1,7.1),(13.8,0) and polygon
(13.8,23.9)(16.3,0),(4.1,7.1),(13.8,23.9),(13.8,0),(4.1,7.1),(0,0),(13.8,1.4)
solve (log(2,x+a)-log(2,x-a))^2-3*a*(log(2,x+a)-log(2,x-a))+2*a^2-a-1 = 0 where
a=2