n>a/(b-c) where a = 3700, b = 1700, c=1400
b = N[a*(1-p/100)] where a=78,p=5
{18,37,35,45,35,39,23,27,21,45,48,47,46,58,58,66,29,49,55}
B=m*v+n*w where m=5,n=36,v=690,w=250
triangle (0,0),(6,0),(6,8)
p=N[m/n] where m = 18, n = 20
solve (x-3)^(1/3)=4
polygon [0,0],[-3.8,0],[0,10],[5.8,0],[0,0],[0,10],triangle [-3.8,0],[-2.6,3.2],[5.8,0]
fit polynomial
sphere radius 3, red cube edge length 6
log(2,7)*log(7,32)
T = (P/(sigma*S))^(1/4) where P = (114/100)*10^26, sigma = (57/10)*10^(-8), S = (1/648)*10^21
square pyramid base 8,height 4sqrt2 and red square pyramid base 4,height 2sqrt2
v = (a*(T-t)+s)/T where s=22,T=8,t=3,a=2
maximize (2*x-6)*E^(13-4*x) over [2,14]
solve {4^cos(x)+4^(-cos(x)) = 5/2,-3*Pi<=x,x<=-3*Pi/2}
4^cos(x)+4^(-cos(x)) = 5/2, x from -3*Pi to -3*Pi/2