ceil(a/(b-c)) where a = 2900, b = 1400, c=1000
b = N[a*(1-p/100)] where a=92,p=10
plot {155,159,161,157,155,162,166,169,168,170,171, 169,166,164,165,167,163,164,165,165,160,154,153}
B=m*v+n*w where m=6,n=43,v=750,w=230
triangle (1,1),(13,1),(1,10)
p=N[m/n] where m=15,n=25
solve (x-5)^(1/3)=3
polygon [0,0],[-3.2,0],[0,10],[8.4,0],[0,0],[0,10],triangle[-3.2,0],[-2.1,3.4],[8.4,0]
fit polynomial
red sphere radius 1, white cube edge length 2
simplify log(3,5)*log(5,81)
T=(P/(sigma*S))^(1/4) where P=(456/100)*10^26,sigma =(57/10)*10^(-8),S =(1/512)*10^21
red square pyramid base 3,height 3/sqrt2 and white square pyramid base 6,height 6/sqrt2
v=(a*(T-t)+s)/T where s=15,T=7,t=4,a=2
minimize (x-4)*E^(2*x-7) over [2,11]
solve {4^sin(x)+4^(-sin(x)) = 5/2,5*Pi/2<=x,x<=4*Pi}
plot (4^(-sin(x)),5/2-4^sin(x)),x=5*Pi/2..4*Pi
green cone with radius 6, height 3sqrt5 and triangle (0,-6,0),(-3sqrt3,-3,0),(0,0,3sqrt5)
solve {2^x+80/2^x >= 21,log(x-1,(x+1)/5) <= 0}
polygon [57.8, -55.3],[-80, 0],[69.3, 40],[57.8, -55.3],[99.3, 0], [69.3, 40] and circle through [-80, 0], [69.3, 40], [57.8, -55.3]
sqrt(x^4+(a-5)^4) = abs(x+a-5)+abs(x-a+5)