ceil(a*b*c/d) for a= 30,b=6,c=103,d=1000
s=n*(1-(1/100)*p) for n=550,p=2
BarChart(465, 475, 530, 535, 505, 520, 500, 540, 525, 558, 506)
W=8*(d+y)+4*p-0.01*F where d=1,y=4,p=4,F=3800
polygon (9,9),(9,0),(0,0),(0,9),(9,9),(0,4),(6,0),(9,9)
p=(7-4)/12
(1/2)^(10-3*x) = 32 over the reals
polygon [7,1],[1,1],[4.4,3.8],[5,1],[1,1]
fit polynomial
black cube with edge 1, center (1,-1,1), cube with edge 3
35sin384/sin24
V=(C/p)^(1/k) where C=(32/10)*10^6,p=2*10^5,k=4/3
cone with radius 5 and height 12
v=(sqrt(t^2*u^2+s^2)-s)/t where u=8,s=63,t=2
maximize sqrt(-6+12*x-x^2)
{tan(x)^2+(1+sqrt(3))*tan(x)+sqrt(3)=0, 5*Pi/2<= x, x <= 4*Pi}
plot tan(x)^2+(1+sqrt(3))*tan(x)+sqrt(3) for x from 5*Pi/2 to 4*Pi and y from -1 to 1
triangular pyramid with base edge length 6, height 2*sqrt(6)
solve {3^x+10*3^(3-x) >= 37, log(2*x-3,10-3*x) >= 0} over the reals
real plot (3^x+10*3^(3-x)-37, log(2*x-3,10-3*x) )
circle (0,0),(3,2.6),(4,0) and polygon
(3,2.6),(0,0),(4,0)(3,2.6),(5.5,1.3),(4,0)